Ehhez a sokat ígérő táblához egyelőre még nincs játékszabály, csak ötlethalmaz… Saját szabályokat kidolgozni hozzá időigényes dolog, de más játékok szabályait kipróbálni rajta azért valamivel egyszerűbb. Egy ilyen kis kalandra, próbára hívnám e sorok olvasóját…
Tehát milyen játékokat ültethetünk át erre a táblára? Természetesen az alábbiak közel sem merítik ki az összes lehetőséget, viszont esélyt látok arra, hogy működőképesek lesznek ezen a táblán is.
Van kedved (és időd) kísérletezni és egy jót játszani? Éppen abban van szükség a kísérletező kedvre, hogy mennyi bábut, milyen kezdéssel, hová…? Milyen céllal, hogyan módosítsunk?…
Kis átalakítással új színt, kellemes változatosságot hozhat például a következő játékokba ez az új tábla, bár felelősséget nem vállalok azért, hogy ez mindegyiknél tényleg így is lesz 🙂 :
- Alquerque (Tizenkét kecske), „egyirányú” Dáma, Róka és a libák (Tigrisek és birkák, Várvédelem…), Szoliter, Halma, Hageby (Vilbergen-Lahti), Camelot, Logi-foci
- Amőba, Pente, „tologatós” Amőba (Gipf), Hexade, „potyogtatós” Amőba, Tőtikék, „begurítós” Amőba, Spangles, Quints, Yinsh
- Havannah, Hex, Cascades, Zenix
- Fanorona,
- Reversi, Back&back, Hasami Shogi, Tablut
- Atari Gó, Isola, Amazons, Pókháló
- Kutya-macska, Kék-Nílus
- Abalone
- Malacfogó, Áttörés
- Sótonyi Sándor játékai (Kipotyogtatós, Fűre lépni tilos)
- Toronyjáték, Awalam (Dwon)
- Dots (mezőre, kövekkel)
Bizonyára észrevetted, hogy nagyjából egy csoportba soroltam olyan játékokat (sőt játékcsaládokat is itt-ott), amelyek hasonló elven működnek, vagy a cél hasonló. A válogatásnál elsősorban a Mini Játékmestert használtam, amely már régen letölthető a Játéktanról. De megtalálod ezeket mind ugyanitt máshol is és/vagy ezen a weboldalon, ahol most tartózkodsz.
A bátor kísérletező észre fogja venni, hogy lesz olyan játék, amely szinte azonmód játszható e táblán, kicsiny változtatás szükséges esetleg, hogy még jobb legyen. Viszont lesznek olyanok is, amelyek már komolyabb adaptációt, átalakítást igényelnek.
Ha a karácsonyfa csúcsát is be akarjuk vonni a játékba, akkor a leginkább szóba jöhető játék „célmezős” lesz, vagy valamilyen „szerepet” célszerű adni ennek a mezőnek. Eleve „célmezős” játék például a Camelot, az Áttörés, a Logi-foci, a Hageby és a Malacfogó. De bizonyos értelemben ennek tekinthető a Várvédelem, a Szoliterek és a Dámák általában is.
Taktika része lehet, vagy esélykiegyenlítési céllal bevezethetőnek tűnik több játékba a Hageby nyerőpontja belépéskor.
Nyilvánvalóan a legszebb valamilyen közösen „építgetős” játékszabály lenne a karácsony szellemének megfelelően, és az eredmény is egy ilyen produktum.
A 12., Dots esetén köveket helyezünk a köröcskékre, ahelyett, hogy pálcikákat (gyufaszálakat) a vonalakra… Azé a háromszög, aki a harmadik követ helyezi a háromszög csúcsába. És persze ismét ő következik. A háromszög elfoglalását jelezhetjük ugyanolyan kavicsokkal.
A végére tartogattam meglepetésnek két, összefüggőnek tekinthető, ütős játékot, amelyek egy játék két különböző nehézségű lépcsőfokának is tekinthetők. Mindkettő besorolható a táblás feladványjátékok sorába. Róka Sándor egyik Újabb logi-sztorik könyvében bukkantam rájuk. A nyolcadik osztály tanulóit jóformán egész Logika órán lekötötték. De bevetheted őket matekórák végére, elejére is, vagy kivételes alkalmakra. Iskolapéldái az irányított próbálkozás (heurisztika) alkalmazásának.
Az első (könnyebbik): Székek
„Egy szobában 6 szék van sorban egymás mellett. A székek kezdetben üresek. Időnként valaki bejön a szobába, leül egy üres székre, és ugyanekkor egyik szomszédja (ha van) föláll és kimegy.
Legfeljebb hány szék lehet foglalt egyszerre ebben a szobában?”
A második (nehezebbik): Babszemek a 3×3-as táblán
„A 3×3-as tábla bármely üres mezőjére letehetsz egy babszemet, de ha a mező valamelyik élszomszédján már van babszem, akkor azok közül egyet le kell venni.
Ilyen szabályok mellett legtöbb hány babszemet tehetünk fel a sakktáblára?”
Megjegyzés
A vége picit megtévesztő: „sakktáblára”, itt konkrétan ugyanerre a 3×3-as táblára értendő. De valóban, érdekes lehet a sakktábla is! 🙂
És természetesen ezen a karácsonyfa táblán is kipróbálható az előbbi gondolatmenet: “Legtöbb mennyi dísz helyezhető fel a fára úgy, hogy az éppen felrakott dísszel szomszédos díszek (ha van ilyen) közül egyet le kell venni? Keressünk ilyen díszítést!”
Ha tetszik mindaz, amit leírtam, akkor kezdd ezzel:
Játéktanítás és Alkalmazás csomag
Tetszett a bejegyzés? Ha igen, oszd meg másokkal is!
Ezt az anyagot bárki felhasználhatja, terjesztheti – egy feltétellel: ha szerzőként feltünteti a nevemet! Mészáros Mihály